Use of Dipole Moment as a Parameter in Drug-Receptor
 Interaction and Quantitative Structure-Activity Relationship Studies

ERIC J. LIEN x, ZONG-RU GUO, REN-LI LI, and CHING-TANG SU

Received June 11, 1981 from the Section of Biomedicinal Chemistry, School of Pharmacy, University of Southern California, Los Angeles, CA 90033. Accepted for publication July 31, 1981.

Abstract

The theoretical basis for using dipole moment as a freeenergy related parameter in studying drug-receptor interaction and quantitative structure-activity relationship (QSAR) is presented. Over 300 group dipole moments for aromatic substituents were compiled using the dipole moments of monosubstituted benzene derivatives. Examples in the literature of using dipole moment in QSAR studies are also presented.

Keyphrases \square Dipole moment-parameter in drug-receptor interaction and quantitative structure-activity relationships, list of 300 for aromatic substituents \square Quantitative structure-activity relationships-dipole moment as a parameter, 300 dipole moments listed for aromatic substituents a Drug-receptor interaction-dipole moment as a parameter, list of 300 dipole moments for aromatic substituents

It is generally accepted that most interactions between drugs and receptors are physicochemical processes. When an equilibrium between a drug-receptor complex ($D R$), a free drug (D), and unoccupied receptor (R) is established, the reversible process can be expressed as:

$$
\begin{equation*}
D+R \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} D R \tag{Eq.1}
\end{equation*}
$$

Under equilibrium conditions the following holds:

$$
\begin{equation*}
\log K=-\Delta G^{\circ} / 2.303 R T \tag{Eq.2}
\end{equation*}
$$

where $K=\left(k_{1} / k_{2}\right)$ is the association constant of the complex $D R, \Delta G^{\circ}$ is the change in standard free energy during the formation of $D R, T$ is the absolute temperature, and R is the gas constant.

The ability of each member of a series of drugs to bind to the receptor is dependent on the difference in the standard free energy change (ΔG°) under the same condition. Factors contributing to this variation in ΔG° can be divided into three major categories: lipophilic, electronic, and steric.

THEORETICAL

Based on linear free-energy relationships, Hansch and Fujita (1, 2) developed a general model to quantitatively describe the relationships between biological activities and molecular structures:

$$
\begin{equation*}
\log (1 / C)=-a \pi^{2}+b \pi+\rho \sigma+d E_{s}+c \tag{Eq.3}
\end{equation*}
$$

where $\log (1 / C)$ is the negative logarithm of the concentration or dosage of a drug producing a standard biological response, π is the hydrophobic constant of the substituent, σ is the Hammett substituent, and E_{s} is the steric constant.
This model was later extended to include differences in degree of ionization, molecular size, and dipole moment, as well as branching (3-5):
\log biological response $=-a(\log P)^{2}+b \log P+c(\mathrm{pKa}-\mathrm{pH})$

$$
+d \log M W+e \mu+f \chi+g
$$

where $\mathrm{pKa}-\mathrm{pH}$ equals the \log (undissociated/dissociated) for acids, μ is the dipole moment, and χ is the branching or other steric factors.
The electronic effects in drug-receptor interactions are represented by the electric dipole moment, μ.

All forces between atoms or drug molecules and receptors or biomacromolecules are electrostatic in origin. Several types of noncovalent interactions between drugs and receptors can be described as interactions between charges (long-range force), between charge and a dipole, and between dipoles (short-range forces).

The potential energy of interaction of two oppositely charged ions relative to the magnitudes of the charges q_{1} and q_{2} and the distance between them r, is given by Coulomb's law:

$$
\begin{equation*}
E=\frac{-q_{1} q_{2}}{D r} \tag{Eq.5}
\end{equation*}
$$

where D is the dielectric constant through which the charges interact. The energy of interactions between charges and receptors is much larger than that of noncharged electronic effects, hydrophobic effects, and others. A charged species also has quite different transport properties than a noncharged species. Therefore, the ionic member in a series of compounds often does not fit the regression line obtained from the series of noncharged compounds and is usually excluded from the series in quantitative structure-activity relationship (QSAR) analysis.
The energy of interaction between an ion and a dipole is given by the following (6):

$$
\begin{equation*}
E=\frac{-N_{a} e \mu \cos \theta}{D\left(r^{2}-d^{2}\right)} \tag{Eq.6}
\end{equation*}
$$

where N_{a} is Avogadro's number, e is the magnitude of the charge, θ is the angle between the line joining the charge and the middle of the dipole and the line between the ends of the dipole, D is the dielectric constant, r is the distance between the charge and the middle of the dipole, and d is the length of the dipole. It is obvious from this equation that the extent to which an ion and a dipole interact is related to the dipole orientation.
The energy of interaction between two dipoles in the most favorable alignment is given by:

$$
\begin{equation*}
E=\frac{-2 \mu_{a} \mu_{b}}{D r^{3}} \tag{Eq.7}
\end{equation*}
$$

where μ_{a} and μ_{b} stand for the dipole moments (6):
The average interaction for all orientations is given by:

$$
\begin{equation*}
E=\frac{-2 \mu_{a}^{2} \mu_{b}^{2}}{3 K T D r^{6}} \tag{Eq.8}
\end{equation*}
$$

The energy of dipole-induced dipole interactions (Debye forces) is:

$$
\begin{equation*}
E=\frac{-\mu_{a}^{2} \alpha_{b}+\mu_{b}^{2} \alpha_{a}}{D^{2} r^{6}} \tag{Eq.9}
\end{equation*}
$$

where α_{a} and α_{b} are the polarizabilities.
The dispersion interactions (London forces) are governed by:

$$
\begin{equation*}
E=\frac{-3 \alpha_{a} \alpha_{b}\left[I_{a} I_{b} /\left(I_{a}+I_{b}\right)\right]}{2 r^{6}} \tag{Eq.10}
\end{equation*}
$$

where I_{a} and I_{b} stand for the ionization potentials.
Note that the dipole-dipole (Keesom) interactions are not only dependent on the orientation of the dipoles but also inversely proportional to the third power of distance (Eq. 7) or the sixth power of distance for all orientations (Eq. 8).

In QSAR studies it it assumed that the receptor remains unchanged; therefore, only the properties of the drug molecule need to be considered ($\mu_{a}, \alpha_{a}, I_{a}, e t c$.).

In most of the published QSAR studies, the electronic parameters most commonly used are the Hammett σ constant and Taft polar constant σ^{*}. The Hammett σ constants result from the comparison of the pKa of a series of substituted benzoic acids to that of benzoic acid. They describe the magnitude of electronic effects of substituents on the reactive center attached to the benzene ring, i.e., the dissociation constants of substituted

Figure 1-A plot of μ versus σ_{p}. Note the scattering of the points, and the quite different slopes and intercepts for equations derived from various subsets.
benzoic acids. In other words, σ constants are a measurement of substituent electronic effects on the reactivity of other parts of the same molecule. It is known that in using σ constants, the orientation and the rate or equilibrium of reactions can be predicted when aromatic compounds are substituted by various functional groups.
If interactions between drugs and receptors are controlled by the electronic nature of the substituents on the benzene ring, σ constants are suitable descriptors of electronic effects for QSAR analysis. However, not all the electronic effects of a series of drugs in drug-receptor complexes work by varying the electronic properties of another reactive center. Different substituents in a series of drugs may directly interact with receptors, i.e., via charge-dipole, dipole-dipole, dipole-induced dipole, and induced dipole-induced dipole interactions between the substituent of a drug and a part of receptor. These interactions could affect the binding force of the drug with the receptor. Therefore, dipole moments, which are the quantitative measurements of separation of charge, should be useful in describing direct drug-receptor interactions through noncovalent bonding.

Group dipole moments of substituents are thermodynamically linear free-energy related functions. They are vectors with additive and constitutive properties. For congeneric series of compounds, dipole moments have been frequently found to correlate well with σ or other linear freeenergy related parameters. For example, the dipole moments of substituted anilines have been correlated with the melting points, N-H stretching frequency in infrared spectra, as well as σ_{p} constants (7). Colinese et al., also have found linear correlation between the dipole moments and $\nu_{(0-\mathrm{H})}$ of a series of 4^{\prime}-substituted-4-hydroxyazobenzenes (8). It was also reported that for N-(4-substituted benzylidene)-4-hydroxyanilines that $\nu_{(\mathrm{O}-\mathrm{H})}$ and $\mu_{(\mathrm{O}-\mathrm{H})}$ are linearly related to Hammett's σ constant (9). A linear relationship between $\mu_{(0-H)}$ and the relative frequency shift ($\Delta \nu$) in dioxane has been used as an evidence of the dependence of $\mu_{(\mathrm{O}-\mathrm{H})}$ on the strength of hydrogen bonding (9). Van Beek (10) also reported some linear relationships between dipole moments and σ constants in a few disubstituted benzene systems. Apparent correlation
has also been reported between the $\mathrm{N}-\mathrm{H}$ chemical shift and the dipole moment of lactams and thiolactams (11).

Despite successful correlation within limited series, the correlation between μ and σ may vary drastically or fail completely if noncongeneric groups are lumped together (Figs. 1 and 2).

Since Hammett's substituent constants (σ) are more readily available for a wide variety of substituents $(12,13)$ than dipole moments, the use of dipole moments in QSAR has only been reported by a few groups in spite of the direct relationship with interaction energy. The present report reviews the reported cases of QSAR using dipole moment as an independent electronic parameter, and compiles a table of group dipole moments for future use.

Method-More than 300 group dipole moments were collected (Appendix 1). most of which were taken from McClellan's book (14). The magnitudes of the group dipole moments of substituents are equal to those of the corresponding monosubstituted benzene. The sign is taken by comparison of the electronegativities between the substituent and the aromatic carbon to which the group is connected. A negative sign stands for a negative end pointing away from the benzene ring.

A total of 114 substituent groups (for which both μ and σ are available) were analyzed to examine the interrelationship between μ and σ. Hammett's σ constants were taken from Hansch and Leo's book (13). All the regression lines were derived by computer ${ }^{1}$ via the method of nonweighted least-squares fit.

RESULTS AND DISCUSSION

The overall correlations between Hammett σ constants and the group dipole moments of 114 substituents are shown in Eqs. 11 and 12:

$$
\begin{align*}
& \mu=-5.99 \sigma_{m}-0.53 \tag{Eq.11}\\
& n=114, r=0.749, s=1.279
\end{align*}
$$

${ }^{1}$ IBM 370/185 computer.

Figure 2-A plot of μ versus σ_{m}. Note the scattering of the points, and the quite different slopes and intercepts for equations derived from various subsets.

$$
\begin{align*}
& \mu=-3.65 \sigma_{p}-1.27 \tag{Eq.12}\\
& n=114, r=0.706, s=1.367
\end{align*}
$$

where μ is the group dipole moment of the substituent, and σ_{m} and σ_{p} are meta- and para-substituent constants, respectively.

Equations 11 and 12 indicate that the correlations between σ constants and dipole moments are not very good, and only 56 and 50%, respectively, ($r^{2} \times 100$) of the variance in the data can be explained by these equations. In other words, about half of the variance in the data cannot be accounted for by these linear relationships. Comparison of Eqs. 11 and 12 shows that the correlation between σ_{m} and μ is better than that of σ_{p} and μ. This is probably due to the delocalization of π electrons between para-substituents and the benzene ring. The σ_{m} value is mainly a measure of inductive effect of the substituent and hence is more comparable to the group dipole moment.

The signs of the dipole moments of hydroxy and alkoxy groups are negative, i.e., the oxygen atom is at the negative end of the dipoles in
Table I-Correlations Between Group Dipole Moment and σ Constants for Selected Subgroups from Table I, Showing Different Slopes and Intercepts ${ }^{\text {a }}$

	n	r	$S D$	Equation
$\mu=-6.82 \sigma_{p}-0.05$	13	0.965	0.459	(13)
$\mu=-4.83 \sigma_{p}-0.49$	15	0.999	0.079	(14)
$\mu=-3.68 \sigma_{p}-0.18$	14	0.999	0.065	(15)
$\mu=-2.99 \sigma_{p}-0.06$	10	0.999	0.036	(16)
$\mu=6.42 \sigma_{p}-6.16$	8	0.995	0.097	(17)
$\mu=-16.52 \sigma_{m}+8.48$	5	0.994	0.147	(18)
$\mu=-8.57 \sigma_{m}+0.42$	14	0.954	0.603	(19)
$\mu=-161 \sigma_{m}+17.46$	8	0.910	0.909	(20)
$\mu=2.20 \sigma_{m}-3.87$	9	0.946	0.099	(21)
$\mu=6.62 \sigma_{m}-6.63$	5	0.999	0.041	(22)

${ }^{a} n=$ number of data points; $r=$ correlation coefficient; and $S D=$ standard deviation.
phenol and alkoxybenzene molecules. This can be explained in terms of the high electronegativity of oxygen in spite of the resonance effect in benzoic acid:

By dividing 11 substituents into subgroups graphically, there are quite different equations correlating dipole moments and σ constants as shown in Table I. In each subgroup no distinct structural relationship is found. The slopes range from -161 to +6.62 , while the intercept ranges from +17.46 to -6.63 .

Although the application of dipole moment in QSAR is not as common as that of σ constants, in some cases it can play an important role in drug-receptor interactions. For example, Tute's results (15) on the inhibition of viral neuraminidase by 1-phenoxymethyl-3,4-dihydroquinolidines was reexamined. Using group dipole moment values instead of the components along the vertical axis μ_{v}, Eq. 23 was derived, which is slightly better than Tute's result using μ_{v} (Eq. 24):

$\log 1 / C=0.258 \pi+0.094 \mu+0.034 \mu^{2}+2.596$

$$
\begin{equation*}
n=16, r=0.956, s=0.062 \tag{Eq.23}
\end{equation*}
$$

Table II-Examples of the Application of Dipole Moment and Polarizability in QSAR ${ }^{\text {a }}$

Compounds	Biological Activity and Correlations Reported	Reference
1-Decylnipecotamides	Chlorinesterase inhibition. Inhibitory activity parallels the increase in dipole moment	16
Local anesthetics	Minimum blocking concentration (MBC) is a function of polarizability and ionization potential I_{p} $\log \mathrm{MBC}=-a \alpha I_{p}+b$	17
Chloramphenicol analogs	$\begin{aligned} & \text { Antimicrobial activity is a function } \\ & \text { of electronic polarization }\left(P_{e}\right) \\ & k_{I}=2.76 P_{e}-6.55 \\ & n=10, r=0.991 \end{aligned}$	18
Cyclic ureas and thioureas	Respiratory stimulant activity is dependent on the dipole moment of three series of the compounds, while the acute lethal toxicity is a function of molecular weight	19
1-Decyl-3-carbamoylpiperidines	Butyrylcholinesterase	20
	$\begin{aligned} & \mathrm{pI}_{50}=-0.058 \pi^{2}+0.923 \pi-0.456 \mu \\ & +5.589 \\ & n=6, r^{2}=0.998 \text { (more data needed) } \end{aligned}$	
Anticonvulsants	$\begin{aligned} & \text { Antielectroshock in mice } \\ & \log 1 / C=0.720 \log P-0.396 \mu+ \\ & 3.144 \end{aligned}$	21
Sulfonamides	$n=11, r=0.967, S D=0.189$ Antimicrobial activity measured as minimum inhibitory concentration (MIC) $\log 1 / \mathrm{MIC}=-0.11 \mathrm{pKa}+0.041 \mu^{2}+$ 5.31	22
Nitroanilines	$\begin{aligned} & n=10, r^{2}=0.91, S D=0.18 \\ & \text { Sweetening potency } \\ & \log \text { relative sweetness }=1.31 \pi- \\ & 1.08 \sigma_{0}+0.45 \mu^{2}+0.052\left(\alpha_{R}-\alpha_{H}\right) \\ & +1.66 \\ & n=9, r^{2}=0.976, S D=0.149 \\ & \text { (too many parameters for too few } \\ & \text { data points) } \end{aligned}$	22
Miscellaneous anticonvulsants	Antielectroshock activity	23
	$\begin{aligned} & \log 1 / C=-0.222(\log P)^{2}+1.153 \log \\ & P-0.368 \mu+2.9994 \\ & n=18, r=0.092, S D=0.24 \end{aligned}$	
Barbiturates, hydantoins, and imides	Antipentylenetetrazol seizures	23
	$\begin{aligned} & \log 1 / C=-0.123(\log P)^{2}+0.588 \log \\ & P-0.597 \mu+0.825 \\ & n=10, r=0.90, S D=0.12 \\ & \text { Acute lethal toxicity } \\ & \log 1 / C=-0.226(\log P)^{2}+0.800 \log \\ & P-0.361 \mu+0.175 \\ & n=10, r=0.99, S D=0.11 \end{aligned}$	2
Convulsants (lactams, thiolactams, ureas, and thioureas)	Acute lethal toxicity	23
	$\begin{aligned} & \log 1 / C=-0.364(\log P)^{2}+1.005 \log \\ & P+0.247 \mu+1.298 \\ & n=20, r=0.89, S D=0.24 \end{aligned}$	
7-Substituted-1,4-benzodiazepinones	Antipentylenetetrazol seizures	24
	$\begin{gathered} \log 1 / C=-0.301(\log P)^{2}+0.852 \log \\ P-0.629 \mu+4.139 \\ n=12, r=0.915, S D=0.227 \end{gathered}$	
	Rotorod Ataxia	24
	$\begin{aligned} & \log 1 / C=15.939 \log \text { Molecular } \\ & \text { Weight }-0.972 \log P+0.549 \mu- \\ & 33.187 \\ & n=16, r=0.933, S D=0.388 \end{aligned}$	
Carbamates and aromatic compounds	Acetylcholinesterase inhibition	25
	$\begin{gathered} \log 1 / K_{d}=-1.340 \log \text { MR }- \\ 2.30 \Sigma \pi+2.404 \Sigma \sigma-0.478 \mathrm{D}+ \\ 0.338 \mu+4.818 \\ n=32, r=0.945, S D=0.594 \end{gathered}$	

Continued

Table II-Continued

Compounds	Biological Activity and Correlations Reported	Reference
Quaternary ammonium compounds	Affinity for Acetylcholine Receptors	26
	$\begin{aligned} & \log K=0.784 \pi_{R}-0.353\left(\pi^{\oplus} \mathrm{N} N\right)^{2}- \\ & 0.171 \pi^{\oplus}-\mathrm{N}=+0.736 \mu_{R}+2.309 n_{\mathrm{OH}} \\ & +2.173 \end{aligned}$	
	$n=128, r=0.961, S D=0.441$	27
$\mathrm{N}-\mathrm{SCCl}_{3}$ containing fungicides	Inhibition of spore germination versus Stemphylium sarcinaeforme	
	$\begin{aligned} & \log 1 / C=-0.314(\log P)^{2}+2.385 \\ & \log P+0.683 \mu-1.666 \\ & n=14, r=0.951, S D=0.411 \end{aligned}$	

${ }^{a} n=$ number of data points used in the regression, $r=$ correlation coefficient, $S D=$ standard deviation.

$$
\begin{align*}
\log 1 / C= & 0.271 \pi+0.062 \mu_{\nu}+0.030 \mu_{v}^{2}+2.552 \\
& n=16, r=0.937, s=0.074 \tag{Eq.24}
\end{align*}
$$

It seems that the substituent effect in the drug-receptor interaction depends more directly on the separation of charge μ than on the electronic distribution of the benzene ring (σ). Although the difference in the regressions obtained is small, this example illustrates the usefulness of the aromatic group dipole moment in QSAR.

Other examples of QSAR using dipole moment as an independent variable are shown in Table II. The examples presented and the theoretical relationships between dipole moment and intermolecular interaction energies with receptors, strongly suggest that dipole moment may be a parameter worth considering in QSAR, especially if σ or other electronic parameters fail to give meaningful correlation.

McFarland (22) has reported that in some cases μ^{2} gives better correlation than μ; this may be due to the relatively narrow range of μ examined. When μ^{2} is used, a wider range of values and a better correlation are obtained. Another report (28) found high degrees of intercorrelation between \log molar refraction ($M R=P_{e}$) and \log molar volume $(M V)$, and between \log molar refraction and \log molecular mass (M):

$$
\begin{gather*}
\log M R=-0.290+0.981 \log M V \tag{Eq.25}\\
n=213, r=0.943, s=0.086 \\
\log M R=-0.358+0.884 \log M
\end{gather*}
$$

$$
\begin{equation*}
n=213, r=0.917, s=0.104 \tag{Eq.26}
\end{equation*}
$$

This is easily understandable from the following equations:

$$
\begin{gather*}
M R=\frac{n^{2}-1}{n^{2}+2} \frac{M}{d} \tag{Eq.27}\\
M V=\frac{M}{d} \tag{Eq.28}
\end{gather*}
$$

The only substituent groups which will not fit Eqs. 27 and 28 are the ones with unusually high densities (d), such as heavy metals and polyhalogenated groups (28).
Furthermore, because of the interrelationship between $M R\left(P_{e}\right)(29)$ and α, one would also expect similar relationship between α and M :

$$
\begin{equation*}
M R=P_{e}, P_{0}=(4 / 3) \pi N_{a} \alpha \tag{Eq.29}
\end{equation*}
$$

where N_{a} is Avogadro's number.
It was recently reported (25) that charge-transfer effects of various carbamates and aromatic compounds can be separated into steric, electronic (μ and σ), and indicator variables (the number of lone pair electrons). They have also shown that the binding of these acetylcholinesterase inhibitors to the enzyme is well correlated with substituent constants like $\log M R, \Sigma \pi, \Sigma \sigma$, and D (indicator variable, Table II).
The affinity constants of 128 quarternary ammonium compounds were correlated linearly with the hydrophobicity constant of the side chain (π_{R}), the dipole moment (μ_{R}), and the number of hydroxy group (n_{OH}). The dependence on the hydrophobicity constant of the quaternary ammonium head ($\pi-\stackrel{+}{N}=$) is parabolic (26).
The dipole moment of the heterocyclic ring bearing $\mathrm{N}-\mathrm{SCCl}_{3}$ group has also been shown to be important in determining the antifungal activity of these fungicides (27). This is true in the spore germination test against a single organism S. sarcinaeforme in QSAR as well as in a test using mixed organisms. In the latter case, discriminant analysis has indicated the important roles of both μ and $\log P(27)$.

It is hoped that the compilation of Table I will make it easier for medicinal chemists to use dipole moment as an independent electronic parameter in future QSAR work.

No.	Formula	R	μ_{R} (Debye)	WLN $^{\text {b }}$	Solvent ${ }^{c}$	Temperature, ${ }^{\circ} \mathrm{C}$
1	Br	$-\mathrm{Br}$	-1.57	*E	$\mathrm{cHx}^{\text {c }}$	20
2	Cl	$-\mathrm{Cl}$	-1.59	*G	B	25
3	F	-F	-1.43	*F	B	30
	H	- H	0.03	* H	L	25
5	GeCl_{3}	$-\mathrm{GeCl}_{3}$	-3.15	*-GE-GGG	B	25
6		-I	-1.36	* I	B	30
7	NO	$-\mathrm{NO}$	$-3.09^{\text {d }}$	*NO	B	25
8	NH_{2}	$-\mathrm{NH}_{2}$	1.53	*Z	B	25
9	NO_{2}	$-\mathrm{NO}_{2}$	-4.13	*NW	B	25
10	$\mathrm{N}_{2} \mathrm{H}_{3}$	$-\mathrm{NHNH}_{2}$	1.80	${ }^{*} \mathrm{MZ}$	D	25
11	N_{3}	$-\mathrm{N}=\mathrm{N}=\mathrm{N}$	-1.56	*NNN	B	25
12	OH	$-\mathrm{OH}$	-1.59	${ }^{*} \mathrm{Q}$	B	25
13	PH_{2}	$-\mathrm{PH}_{2}$	-1.11	${ }^{\text {P PHH }}$	Hx	20
14	SFO_{2}	$-\mathrm{SO}_{2} \mathrm{~F}$	-4.59	*SWF	B	25
15	SF_{5}	$-\mathrm{SF}_{5}$	-3.44	*SFFFFF	B	25
16	SH	$-\mathrm{SH}$	-1.33	*SH	D	25
17	SiCl_{3}	$-\mathrm{SiCl}_{3}$	-2.40	*-SI-GGG	B	25
18	SiF_{3}	$-\mathrm{SiF}_{3}$	-2.72	*-SI-FFF	B	25
19	CCl_{3}	$-\mathrm{CCl}_{3}$	-2.03	*XGGG	CCl_{4}	25
20	CF_{3}	$-\mathrm{CF}_{3}$	-2.61	* XFFF	B	25
21	$\mathrm{CF}_{3} \mathrm{O}$	$-\mathrm{OCF}_{3}$	-2.36	*OXFFF	B	25
22	$\mathrm{CF}_{3} \mathrm{~S}$	$-\mathrm{SCF}_{3}$	-2.50	*SXFFF	B	ns
23	$\mathrm{CF}_{3} \mathrm{Se}$	$-\mathrm{SeCF}_{3}$	-2.48	*-SE-XFFF	B	ns
24	CN	$-\mathrm{CN}$	-4.08	* CN	D	35
25	CNO	$-\mathrm{N}=\mathrm{C}=0$	-3.93	*NCO	B	20
26a	CNS	-SCN	-3.01	*SCN	B	25
26 b	CNS	- NCS	-2.91	*NCS	B	20
27	CNSe	$-\mathrm{SeCN}$	-4.01	*-SE-CN	B	25
28	CHO	- CHO	-3.02	*VH	B	25
29	CHO_{2}	$-\mathrm{COOH}$	-1.30	*VQ	B	25
30	$\mathrm{CHF}_{2} \mathrm{O}$	$-\mathrm{OCHF}_{2}$	-2.46	*OYFF	B	25
31	$\mathrm{CHF}_{2} \mathrm{~S}$	$-\mathrm{SCHF}_{2}$	-2.48	*SYFF	B	25
32	$\mathrm{CHF}_{2} \mathrm{OS}$	$-\mathrm{SOCHF}_{2}$	-3.93	*SO\&YFF	B	25
33	$\mathrm{CHF}_{2} \mathrm{O}_{2} \mathrm{~S}$	$-\mathrm{SO}_{2} \mathrm{CHF}_{2}$	-4.08	*SWYFF	B	25
34	$\mathrm{CH}_{2} \mathrm{Br}$	$-\mathrm{CH}_{2} \mathrm{Br}$	-1.87	${ }^{*} 1 \mathrm{E}$	B	25
35 36	$\mathrm{CH}_{2} \mathrm{Cl}$	- ${ }_{-\mathrm{CH}_{2} \mathrm{CH}}$	-1.83	${ }^{*} 1 \mathrm{I} 1 \mathrm{G}$	$\stackrel{\mathrm{B}}{\mathrm{C}} \mathrm{Cl}_{4}$	20 25
37	$\mathrm{CH}_{2} \mathrm{NO}$	$-\mathrm{CONH}_{2}$	-3.42	*VZ	${ }_{B}$	25
38	$\mathrm{CH}_{2} \mathrm{NO}$	$-\mathrm{CH}=\mathrm{NOH}$ (trans)	-0.87	*1UNQ-T	B	25
39	$\mathrm{CH}_{2} \mathrm{NO}$	$-\mathrm{CH}=\mathrm{NOH}$ (cis)	-0.85	*1UNQ-C	B	25
40	$\mathrm{CH}_{2} \mathrm{NO}$	- NHCHO	-3.35	*MVH	CCl_{4}	ns
41	$\mathrm{CH}_{2} \mathrm{NO}_{2}$	$-\mathrm{CH}_{2} \mathrm{ONO}$	-2.10	${ }^{*} 10 \mathrm{ONO}$		ns
42	${ }^{\mathrm{CH}_{3}} \mathrm{CH}_{3}$	$-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	0.36 1.73	${ }^{*} 18$	B	25
44	$\mathrm{CH}_{3} \mathrm{O}$	$-\mathrm{OCH}_{3}$	1.73 -1.30	${ }^{*} \mathrm{O} \mathrm{O}$	B	25 25
45	$\mathrm{CH}_{3} \mathrm{NS}$	$-\mathrm{NHCSNH}_{2}$	-5.16	*MYZUS	D	25
46	$\mathrm{CH}_{3} \mathrm{OS}$	$-\mathrm{SOCH}_{3}$	-3.98	*SO\&1	B	20
47	$\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{~S}$	$-\mathrm{SO}_{2} \mathrm{CH}_{3}$	-4.75	*SW1	B	25
48	$\mathrm{CH}_{3} \mathrm{O}_{3} \mathrm{~S}$	$-\mathrm{OSO}_{2} \mathrm{CH}_{3}$	-3.77	*OSW1	B	25
49	$\mathrm{CH}_{3} \mathrm{~S}$	$-\mathrm{SCH}_{3}$	-1.34	*S1	B	ns
50	$\mathrm{CH}_{3} \mathrm{Se}$	$-\mathrm{SeCH}_{3}$	-1.31	*-SE-1		ns
51	$\mathrm{CH}_{4} \mathrm{~N}$	$-\mathrm{NHCH}_{3}$	1.69	${ }^{*}$ M1 ${ }^{\text {d }}$	B	25
52 53 53	$\underset{\mathrm{C}_{2} \mathrm{H}}{\mathrm{CH}_{4} \mathrm{NSO}_{2}}$	$-\mathrm{CHSO}{ }_{-} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-4.60 -0.77	*MSW1	D	30
53	${\stackrel{C}{C} 2 \mathrm{C}_{2} \mathrm{H}}_{\mathrm{C}_{2} \mathrm{~N}}$	- ${ }_{-}{ }^{\text {CH }} \mathrm{CH} 2 \mathrm{CH}$	-0.77 -3.60	${ }^{*} 1 \mathrm{ICN} 1$	B	25 25
55	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$		-6.63	*AT5NNVOJ	B	30
56	$\mathrm{C}_{2} \mathrm{H}_{3}$	$-\mathrm{CH}=\mathrm{CH}_{2}$	0.20	${ }^{*} 1 \mathrm{U} 1$	B	25
57	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$	$-\mathrm{COCH}_{3}$	-2.90	*V1	B	25
58	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$-\mathrm{OCOCH}_{3}$	-1.72	*OV1	B	25
59	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$-\mathrm{COOCH}_{3}$	-1.92	*VO1	B	25
60	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$-\mathrm{CH}_{2} \mathrm{COOH}$	1.86	*IVQ	D	25
61	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}$	$-\mathrm{NHCOCH}_{3}$	-3.65	*MV1	B	25
62	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NS}$	$-\mathrm{NHCSCH}_{3}$	-4.28	*MYUS	B	25
63 64	${ }_{\text {C2 }}^{\mathrm{C}_{2} \mathrm{H}_{5}}$	$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	-0.39	*2	${ }_{\mathrm{cH}} \mathrm{x}$	25
64	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$	$-\mathrm{OC}_{2} \mathrm{H}_{5}$	-1.38	*O2	B	25
65	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~S}$	$-\mathrm{SO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	-3.48	*SW2	B	25
66 67		- $\mathrm{SO}_{3} \mathrm{C}_{2} \mathrm{H}_{5}$	$\begin{array}{r}-4.99 \\ \hline 146\end{array}$	* SW02	D	25
67 68	${ }_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}} \mathrm{C}_{5} \mathrm{C}^{\text {a }}$	$-\mathrm{SC}_{2} \mathrm{HCH}_{5}$	1.46 -4.08	${ }_{*}^{*}$ S2 21	D	25 25
69	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	1.61	*N1\&1	B	25
70	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OP}$	$-\mathrm{PO}\left(\mathrm{CH}_{3}\right)_{2}$	-4.39	*PO\&1\&1	B	20
71	$\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{P}$	$-\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}$	-1.31	*P1\&1	B	20
72 73	$\mathrm{C}_{3} \mathrm{~F}_{3}$	$-\mathrm{C}=\mathrm{CCF}_{3}$	-3.38	*1UU1XFFF	B	ns
73 74	$\stackrel{\mathrm{C}_{3} \mathrm{C}_{3} \mathrm{HF}_{7} \mathrm{~F}_{6} \mathrm{O}}{ }$	$-\mathrm{C}(\mathrm{OH})\left(\mathrm{CF}_{3}\right)_{2}$	-2.68 -1.71	*XPXPFFFXXFFF	$\stackrel{\text { B }}{\text { L }}$	25 25

No.	Formula	R	μ_{R} (Debye)	WLN ${ }^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
75	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~F}_{3}$	$-\mathrm{CH}=\mathrm{CHCF}_{3}$	-2.79	*1U1XFFF	B	ns
76	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~F}_{3}$	$-\mathrm{C}\left(\mathrm{CF}_{3}\right)=\mathrm{CH}_{2}$	-2.25	*YU1\&XFFF	B	20
77	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}$	- $\mathrm{CH}=\mathrm{CHCN}$ (trans)	-4.12	*1U1CN -T	B	20
78	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{~N}$	$-\mathrm{CH}=\mathrm{CHCN}($ cis $)$	-3.54	*1U1CN --C	B	20
79	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NS}$	S^{1}	-1.21	*BT5N CSJ	CCl_{4}	20
80	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NS}$		-1.33	*ET5N CSJ	CCl_{4}	20
81	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{NS}$		-1.89	*DT5N CSJ	CCl_{4}	20
82	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{2}$	$-\mathrm{COCH}_{2} \mathrm{CO}-$	-2.73	*V1V*	D	25
83	$\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{2}$	$-\mathrm{OCOCH}=\mathrm{CH}-$	-4.63	*OV1U1*	D	25
84	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$	$-\mathrm{CH}=\mathrm{CHCHO}$	-2.71	*1U1VH	B	25
85	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{2}$	$-\mathrm{CH}=\mathrm{CHCOOH}$	-2.04	*1U1VQ	B	ns
86	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{2}$	$-\mathrm{COCOCH}_{3}$	-2.44	*VV1	B	25
87	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$	$\left\langle{ }_{n}^{N}\right\rangle$	3.14	*AT5N CNJ	B	25
88	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$		2.00	*AT5NNJ	B	25
89	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$	4	2.26	*CT5MNJ	B	25
90	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}$	\mathbb{L}	2.18	*AT5NNJ CQ	D	25
91	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}$		2.43	*AT5NNJ DQ	D	25
92	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}$	$0 \rightarrow \mathrm{~N}^{\prime}, \mathrm{N}$	3.41	*AT5NNJ EQ	D	25
93	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{Se}$	$-\mathrm{SeC} \equiv \mathrm{CCH}_{3}$	-1.31	*-SE-1UU2	B	25
94	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Se}$	- $\mathrm{SeCH}=\mathrm{CHCOOH}$ (trans)	-2.27	*SE-1U1VQ-T	B	25
95	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Se}$	- $\mathrm{SeCH}=\mathrm{CHCOOH}$ (cis)	-1.69	*-SE-1U1VQ -C	B	25
96	$\mathrm{C}_{3} \mathrm{H}_{4}$	$-\mathrm{CH}=\mathrm{CHCH}_{2}-$	0.62	*1U2*	B	25
97	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}-$	-3.85	*2VO*	B	25
98	$\mathrm{C}_{3} \mathrm{H}_{5}$	\longrightarrow	0.51	*AL3TJ	B	25
99	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$	$-\mathrm{COC}_{2} \mathrm{H}_{5}$	-2.90	* V2	B	30
100	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	$-\mathrm{CH}_{2} \mathrm{OCOCH}_{3}$	-1.68	*10V1	L	25
101	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	$-\mathrm{COOC}_{2} \mathrm{H}_{5}$	-1.85	*VO2	B	25
102	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$	$-\mathrm{CH}_{2} \mathrm{COOCH}_{3}$	-1.81	* 1 VOL	B	24
103	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$		$1.97{ }^{e}$	*BT50 COTJ	B	20
104	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OS}$		1.30	* $\mathrm{O}-\mathrm{CT} 4 \mathrm{STJ}$	ns	ns
105	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OS}$	$-\mathrm{COSC}_{2} \mathrm{H}_{5}$	-1.55	*VS2	B	25
106	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{OS}$	$-\mathrm{CSOC}_{2} \mathrm{H}_{5}$	-2.24	*YUS\&O2	B	25
107	$\mathrm{C}_{3} \mathrm{H}_{6}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$	0.55	*3*	$\mathrm{cHx}^{\text {che }}$	25
108	$\mathrm{C}_{3} \mathrm{H}_{6}$	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$	0.77	*YU1	B	25
109	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}$	$-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{3}$	-3.60	*N1\&V1	B	25
110	$\mathrm{C}_{3} \mathrm{H}_{7}$	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	0.40	*Y	$\mathrm{cHx}^{\text {d }}$	25
111	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}$	$-\mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$	$1.06{ }^{e}$	*Y01\&01	B	20
112	$\mathrm{C}_{4} \mathrm{~F}_{9}$	- $\left(\mathrm{CF}_{2}\right)_{3} \mathrm{CF}_{3}$	-2.86	*/XFF/4F	B	25
113	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$		0.81	*BT5SJ	B	25

No.	Formula	R	μ_{R} (Debye)	WLN $^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
114a	$\mathrm{C}_{4} \mathrm{H}_{4}$	-(CH) ${ }_{4}$	0.00	*R A*B*	B	25
114 b	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}$	$-\mathrm{CH}=\mathrm{CHCOCH}_{3}$	-2.89	${ }_{*}^{*}$ + ${ }^{*}$ (V1V1	B	25
115	$\mathrm{C}_{4} \mathrm{H}_{8}$	$-\left(\mathrm{CH}_{2}\right)_{4}-{ }^{-}$	0.73	${ }^{*} 4^{*}$	B	25
116	$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$	$-\mathrm{CH}_{2} \mathrm{OCOC}_{2} \mathrm{H}_{5}$	-1.80	*10V2	L	28
117	$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$	$-\mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$	-1.85	${ }^{*} 1 \mathrm{VO}_{2}$	B	24
118	$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$	$-\mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$	-1.82	*VOY	B	25
119	${ }^{\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}}$	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCOCH}_{3}$	-1.86	*20V1	B	25
120	$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$	$-\mathrm{CH}=\mathrm{CHCOOCH}_{3}$	-2.13	*1U1V01	B	30
121	$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$		$1.47{ }^{\text {e }}$	*BT60 COTJ	B	20
122	$\mathrm{C}_{4} \mathrm{H}_{9}$	$-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	0.52	* X	B	25
123	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}$	$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$	-1.19	${ }^{*} \mathrm{O} 4$		20
124	$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{P}$	$-\mathrm{PO}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}$	-3.04	*PO\&O2\&02	CCl_{4}	25
125	${ }_{C}^{\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}}$	$\left.-{ }_{-\mathrm{CH}}^{2} \mathrm{SN}\right)\left(\mathrm{CH}_{3}\right)_{3}$	0.68	${ }_{*}^{*}$ 1-SI-1\&1\&1	B	25
126	$\mathrm{C}_{5} \mathrm{~N}_{3}$	$-\mathrm{C}(\mathrm{CN})=\mathrm{C}(\mathrm{CN})_{2}$	-5.30	*YCN\&UYCN\&CN	B	30
127	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}$		-4.10	* CL5VJ	B	30
128	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{OS}$		-3.45	*V- BT5SJ	B	25
129	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~S}_{2}$		-3.15	*YUS- BT5SJ	B	ns
130	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$		-1.94	* BT6NJ	B	25
131	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	${ }_{N}$	-2.28	* CT6NJ	B	25
132	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$		-2.57	* DT6NJ	B	25
133	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}$		-1.64	*V-BT5MJ	B	25
134	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}$		-4.52	* DT6NJ AO	ns	ns
135	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}$		-1.96	* $\mathrm{O}-\mathrm{BT} 6 \mathrm{NJ}$	B	20
136	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}$		-2.46	*O- DT6NJ	B	20
137	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{3}$		-4.10	*V-AT5NTJ	D	30
138	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~S}$	$-Q_{s}$	-1.10	* BT5SJ Cl	B	25
139	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~S}$		-0.88	* BT5SJ D1	B	25
140	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~S}$		-0.79	* AT6SJ \&5	B	30
141	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{NO}_{2}$		1.80	*1- AT5NTJ	D	25
142	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{NO}_{2}$		-5.65	* DT5NOVTJ A1 E1	B	ns
143	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{NO}_{2}$		-5.70	* ET5NOVTJ A1 D1	B	ns

No.	Formula	R	μ_{R} (Debye)	$\mathrm{WLN}{ }^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
164	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IO}$		2.06	*OR BI	B	20
165	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IO}$		1.68	*OR CI	B	20
166	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IO}$		1.47	*OR DI	B	20
167	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IS}$		2.38	*SR BI	B	20
168	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IS}$		1.80	*SR CI	B	20
169	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IS}$		1.50	*SR DI	B	20
170	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}$		-2.95	*V- BT6NJ	B	25
171	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}$		-3.01	*V-CT6NJ	B	25
172	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}$		-3.06	*V- DT6NJ	B	25
173	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~S}$		-5.22	*SR BNW	B	20
174	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2} \mathrm{~S}$		-4.04	*SR CNW	B	20
175	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}$		-4.04	*OR CNW	B	20
176	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}$		-4.60	*OR BNW	B	20
177	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{5} \mathrm{~S}$		-4.72	*OSWR DNW	B	25
178	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{5} \mathrm{~S}$		-2.76	*SWOR DNW	B	ns
179	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}$		-6.36	*MR BNW DNW	B	ns
180	$\mathrm{C}_{6} \mathrm{H}_{5}$		0.00	*R	L	ns
181	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}$		-4.13	*1- BT6NJ AO	B	25
182	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}$		-4.61	${ }^{*} 1$ - CT6NJ AO	B	25
183	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}$		-4.63	${ }^{*} 1$ - DT6NJ AO	D	25
184	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}$		-1.36	*1UN-BT6NJ	B	25
185	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}$		-2.98	${ }^{*} 1 \mathrm{UN}-\mathrm{CT} 6 \mathrm{NJ}$	B	25

No.	Formula	R	μ_{R} (Debye)	WLN ${ }^{\text {b }}$	Solvent ${ }^{\text {c }}$	$\begin{gathered} \text { Temperature, } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
186	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}$		-4.16	*1UN- DT6NJ	B	25
187	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$		-1.73	*NUNO\&R	B	25
188	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$		1.66	*NUNR DQ	B	25
189	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$		1.16	*OR	B	25
190	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$		1.34	*R DQ	B	20
191	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}$		1.63	*R BQ	B	25
192	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OS}$		-4.07	*SO\&R	B	25
193	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~S}$		-5.05	*SWR	B	25
194	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{~S}$		-4.72	*OSWR	B	25
195	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}$		$1.55{ }^{\text {e }}$	*SR	B	25
196	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}_{2}$		1.79	*SSR	B	25
197	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$	$-\mathrm{NHC}_{6} \mathrm{H}_{5}$	1.11	*MR	B	25
198	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$		1.45	*R BZ	B	25
199	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$		-2.18	*1-CT6NJ	B	25
200	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$		-1.89	*1-BT6NJ	B	25
201	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$		-2.65	*1- DT6NJ	B	25
202	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}$	$-\mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	-4.58	*MSWR	B	25
203	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NS}$		1.87	*SR BZ	B	20
204	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NS}$		2.44	*SR DZ	B	20
205	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{3}$		1.49	*NUNR BZ	B	20
206	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{3}$		1.71	*NUNR CZ	B	20
207	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{3}$		2.50	*NUNR DZ	B	20
208	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}$		-2.65	* AT5NNJ C1 EO2	D	25
209	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}$		-2.83	* BT5NNV DHJ D1 D1 E1	D	25

No.	Formula	R	μ_{R} (Debye)	WLN $^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
210	$\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{~S}$		-3.16	* BT5NNY DHJ CUS D1 D1 E1	D	25
211	$\mathrm{C}_{6} \mathrm{H}_{11}$		0.62	*AL6TJ	B	30
212	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}$		-1.55	*O- AL6TJ	B	20
213	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}$		1.87	* AL6TJ DQ -C	B	25
214	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}$		1.56	* AL6TJ DQ -T	B	25
215		$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCOC}_{3} \mathrm{H}_{7}$	1.85	*20V3		
216	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}$	$-\mathrm{COOC}_{5} \mathrm{H}_{11}-n$	$\begin{array}{r} 1.09 \\ -1.99 \end{array}$	*VO5	$\stackrel{L}{\mathrm{~L}}$	25
217	$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}^{2}$	$-\mathrm{N}\left(\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}$				
218a	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}$		-4.88	*OR BCN	B	20
218 b	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}$		-1.22	* CT56 BN DOJ	B	25
219	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}$	-0-	-4.01	*OR CCN	B	20
220	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}$		-4.23	*OR DCN	B	20
221	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}$		-4.43	*VOR DNW	B	40
222	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}$		-5.04	*SR BCN	B	20
223a	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}$		-4.14	*SR DCN	B	20
223b	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}$		-0.94	* CT56 BN DSJ	B	20
$\begin{aligned} & 224 \\ & 905 \end{aligned}$	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	$-\mathrm{OCOC}_{6} \mathrm{H}_{5}$	-1.90	*OVR	B	25
225	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}$	$-\mathrm{COC}_{6} \mathrm{H}_{5}$	-3.04	*VR	B	25
226	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}$		-1.92	*OVR BQ	B	25
227a	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}$		-2.90	${ }^{*} 1 \mathrm{U} 1-\mathrm{CT} 6 \mathrm{NJ}$	B	25
227 b	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}$		-1.61	*YUNR	B	25
228a	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}$		-2.70	${ }^{*} 1 \mathrm{U} 1-\mathrm{DT6NJ}$	B	25
228b	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}$	$-\mathrm{N}=\mathrm{CH}-2$	1.61	*NUYR	B	25
229	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}$		-2.73	*1UNR BQ	B	25
230	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}$		1.94	*NUCUNR DQ	B	25
231a	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}$		-3.44	*NR\&VH	B	25
231b	$\mathrm{C}_{7} \mathrm{H}_{7}$		0.36	*1R	B	20

No.	Formula	R	μ_{R} (Debye)	$\mathrm{WLN}^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
232	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrNO}$		4.21	* DL6NTJ BE DCN	B	25
233	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}$	$-\mathrm{CH}=\mathrm{N}-\mathrm{NH}-2$	-2.03	*1UNMR	B	25
234	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}$		-2.20	*NR\&YUM	D	25
235	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}$		1.54	*NUNR DO1	B	20
236	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$		1.38	*R BO1	B	35
237	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2}$	$\bigcirc-\mathrm{CH}_{2}-\mathrm{O}-$	1.16	*O10R	B	25
238	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~S}$		-5.29	*OSWR D1	B	ns
239	$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~S}_{2}$		1.34	*S1SR	B	25
240	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}$		1.24	*N1\&R	B	20
241	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}$		1.84	* 1 R DZ	B	ns
242	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}$		3.63	- DL6VTJ DCN	B	30
243	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}$		1.79	*MR C01	B	25
244	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~S}$		-4.41	*NR\&SW1	D	30
245	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}$		$\begin{aligned} & -5.08 \\ & -5.44 \end{aligned}$	*SWMR DOI	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & 25 \end{aligned}$
246	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{3} \mathrm{~S}$		$\begin{aligned} & 5.21 \\ & 5.65 \end{aligned}$	*MSWR DM1	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & 25 \end{aligned}$
247	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{3}$		2.91	*NUNR DM1	B	20
248	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{P}$		1.39	*P1\&R	B	20
249	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}$		-2.80	*V-CT5NNJ B1 D1 E1	B	25
250	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{O}$		-3.23	*1U BL6VYTJ	B	25
251	$\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2}$		-3.59	*NV1\&VX	B	20
252	$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}$		-2.13	*1VO5	B	25
253	$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}$		-2.05	*OVY2\&3	B	25

Appendix I-Continued

No.	Formula	R	μ_{R} (Debye)	WLN ${ }^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
254a	$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}$		-1.70	*BT50 COTJ D1 D1 E1 E1	B	25
254b	$\mathrm{C}_{8} \mathrm{H}_{5}$	$-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}$	0.00	${ }^{*}$ 1UU1R	CCl_{4}	25
255	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{2}$		-3.71	*VVR	B	25
256	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}$		-3.30	*VOVR	B	25
257	$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Se}$		1.32	*-SE-1UU1R	B	25
258	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}$		1.85	*IU1R DE	B	25
259	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}$		-1.68	*YGU1R -C	B	25
260	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}$		-1.29	*YGU1R -T	B	25
261	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}$		1.56	*1U1R BG -C	B	25
262	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}$		1.34	*1U1R BG-T	B	25
263	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}$		1.66	*1U1R CG -T	B	25
264	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}$		1.73	*1U1R DG	B	25
265	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3}$		1.82	*YR\&XGGG	B	17
266	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}$		1.49	*1U1R DF	B	25
267	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}$		1.80	*1U1R DI	B	25
268	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{2}$		-3.32	*1UNOVR	B	25
269	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{2}$		-4.74	*1U1R DNW	B	25
270	$\mathrm{C}_{8} \mathrm{H}_{7}$		0.64	*R D1U1	B	ns
271	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}$		1.64	*1U1R DQ	B	25
272	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}$		-3.11	*R DV1	B	20-60
273	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}$		-2.06	*V01R	B	30
274	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}$		-2.56	*VO1R DQ	B	30
275	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SSe}$		1.81	*S1U1-SE-R	B	25
276	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Se}$		1.17	*-SE-1U1R-C	B	25

No.	Formula	R	μ_{R} (Debye)	WLN ${ }^{\text {b }}$	Solvent ${ }^{\text {c }}$	Temperature, ${ }^{\circ} \mathrm{C}$
277	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Se}$		1.06	*-SE-1U1R-T	B	25
278	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}$		2.06	*1U1R DZ	B	25
279	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}$	$-\mathrm{N}=\mathrm{CH}-\mathrm{CH}_{3}$	1.93	*NU1R D1	B	25
280	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}$		-3.61	*NR\&V1	B	25
281	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}$		2.87	*NU1R B01	B	25
282	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}$	$-\mathrm{N}=\mathrm{N}$	3.47	*NUNR BMV1	B	20
283	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}$		3.71	*NUNR CMVI	B	20
284	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}$	$-\mathrm{N}=\mathrm{N}-\mathrm{NHC}-\mathrm{CH}_{3}$	3.72	*NUNR DMV1	B	20
285	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{OS}$	$-\mathrm{CH}_{2} \mathrm{SOCH}_{2}-\Omega$	-3.76	*1SO\&1R	B	25
286	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2}$		-2.27	*10V1U1R	B	30
287	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}$		-4.25	${ }^{*} 1$ SW1R	B	25
288	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~S}$	$-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2}-$ -	1.34	${ }^{*}$ ISIR	B	25
289a	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~S}_{2}$	$-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2}-\mathrm{l}$	1.87	*1SS1R	B	25
289b	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}$		-7.46	*S1\&UNSWR D1	B	20
290	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3}$		2.82	*NUNR DN1\&1	B	20
291	$\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{PO}$	$\mathrm{PO}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}$	-4.31	*PO\&4\&4	B	25
292	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{OS}$		-3.25	*V1U2U1- BT5SJ	B	25
293	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{OS}$		-3.50	*1U2U1V-BT5SJ	B	25
294	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{OS}$		-3.21	*1U1V1U1-BT5SJ	B	25
295	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2}$		-3.29	*1U1V1U1-BT50J	B	25
296	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{2}$		-3.27	*1U2U1V-BT50J	B	25
297	$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$		-2.54	*OVR BOV1	B	25

Appendix I-Continued

No.	Formula	R	μ_{R} (Debye)	WLN $^{\text {b }}$	Solvent ${ }^{\text {c }}$	$\begin{gathered} \text { Temperature, } \\ { }^{\circ} \mathrm{C} \end{gathered}$
298	$\mathrm{C}_{9} \mathrm{H}_{9}$		0.59	*1U1R D1	B	25
299	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}$		1.05	*1U1R D01	B	25
300	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}$		$\begin{aligned} & 1.45 \\ & 1.15 \end{aligned}$	*1U1R DO1	B	25
301	$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}$		1.97	*10V1R	B	24
302	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}$		1.66	*1U1R D02	B	25
303	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}$		2.27	*1U1R DN1\&1	B	25
$\begin{aligned} & 304 \\ & 305 \\ & 306 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N} \\ & \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{P} \\ & \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{PO} \end{aligned}$	$\begin{aligned} & \text { - } \mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \\ & -\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}{ }_{20}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \end{aligned}$	$\begin{array}{r} 0.70 \\ -1.52 \\ -4.49 \end{array}$	*NR\&R *PR\&R *PO\&R\&R	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$

${ }^{a}$ Taken from Ref. 14 unless stated otherwise. ${ }^{b}$ From E. G. Smith, "The Wiswesser Line-Formula Chemical Notation," McGraw-Hill, New York, N.Y., 1968. ${ }^{\text {c Solvents: }}$ $\mathrm{cHx}=$ Cyclohexane, $\mathrm{Hx}=$ hexane, $\mathrm{B}=$ benzene, $\mathrm{D}=1,4$-dioxane, $\mathrm{L}=$ liquid state, $\mathrm{ns}=$ not stated. ${ }^{d} \mathrm{~V} . \mathrm{I}$. Minkin, O. A. Osipov, and Y. A. Zhdanov "Dipole Moments in Organic Chemistry," English Translation by B. J. Hazzard, Plenum, New York, N.Y., 1970, e O. Exner, V. Jehlieka, and B. Uchytil, Coll. Czech. Chem. Commun. 33, 2862 (1968)

REFERENCES

(1) C. Hansch and T. Fujita, J. Am. Chem. Soc., 86, 1616 (1964).
(2) T. Fujita, J. Iwasa, and C. Hansch, ibid., 86, 5175 (1964).
(3) E. J. Lien, in "Medicinal Chemistry IV," Proceedings of the 4th International Symposium on Medicinal Chemistry, J. Mass, Ed., Elsevier, Amsterdam, The Netherlands 1974, pp. 319-342.
(4) E. J. Lien, in "Drug Design," vol. 5, E. J. Ariens, Ed., Academic, New York, N.Y., 1976, pp. 88-132.
(5) E. J. Lien, Ann. Rev. Pharmacol. Toxicol., 21, 31 (1981).
(6) B. Pullman and M. Weissbluth, "Molecular Biophysics," Academic, New York, N.Y., 1965, p. 153.
(7) K. C. Tseng, Chem. J. (China), 32, 136 (1964).
(8) D. C. Colinese, D. A. Ibbitson, and C. W. Stone, J. Chem. Soc., B, 1971,570.
(9) D. C. Colinese, ibid., 1971, 864.
(10) L. K. H. Van Beek, Rec. Trav. Chim. Pays-Bas, 76, 729 (1957).
(11) E. J. Lien, J. T. Chou, and G. Gudauskas, Spectrosc. Lett., 5, 293 (1972).
(12) C. Hansch, A. Leo, S. H. Unger, K. H. Nikaitaini, and E. J. Lien, J. Med. Chem., 16, 1207 (1973).
(13) C. Hansch and A. Leo, "Substituent Constants for Correlation Analysis in Chemistry and Biology," Wiley, New York, N.Y., 1979.
(14) A. L. McClellan, "Tables of Experimental Dipole Moments," vol. 2, Rahara Enterprises, El Cerrito, 1974.
(15) M. S. Tute, J. Med. Chem., 13, 48 (1970).
(16) W. P. Purcell, J. G. Beasley, and R. P. Quintana, Biochim. Biophys. Acta, 88, 235 (1964).
(17) D. Agin, L. Hersh, and D. Holtzman, Proc. Natl. Acad. Sci. USA,

53, 592, (1965).
(18) A. Cammarata, J. Med. Chem., 10, 525 (1967).
(19) E. J. Lien and W. D. Kumler, ibid., 11, 214 (1968).
(20) J. M. Clayton and W. P. Purcell, ibid., 12, 1087 (1969).
(21) E. J. Lien, ibid., 13, 1189 (1970).
(22) J. W. McFarland, Prog. Drug Res., 15, 123 (1971).
(23) E. J. Lien, G. L. Tong, and L. L. Lien, J. Pharm. Sci., 62, 246 (1973).
(24) E. J. Lien, R. C. H. Liao, and H. G. Shinouda, ibid., 68, 463 (1979).
(25) C.T. Su and E. J. Lien, Res. Commun. Chem. Pathol. Pharmacol., 29, 403 (1980).
(26) E. J. Lien, E. J. Ariens, and A. J. Beld, Eur. J. Pharmacol., 35, 245 (1976).
(27) E. J. Lien and J. P. Li, Acta Pharm. Jugosl., 30, 15 (1980).
(28) C. D. Selassie, P. H. Wang, and E. J. Lien, ibid., 30, 135 (1980).
(29) E. J. Lien and L. Kennon, in "Remington's Pharmaceutical Sciences," 16 th ed., A. Osol, Ed., Mack Publishing, Easton, Pa., 1980, pp. 160-181.

ACKNOWLEDGMENTS

This paper is dedicated to the late Warren D. Kumler for his pioneering work in electric dipole moments and acid-base dissociation constants.

The authors express their sincere thanks to Professor Corwin Hansch of Pomona College for his suggestions and encouragements, and to Dr. Albert Leo for his assistance in assigning the WLN to many of the groups listed.

